Harmelalkaloider

Generell information

Harmelalkaloider (även kallade harmala alkaloider) är samlingsnamnet för alkaloiderna harmin, harmalin, harman, harmaol och liknande substanser med liknande molekylstruktur. Harmelalkaloider ingår i gruppen betakarboliner.

När man undersökte växten Banisteriopsis caapi fann man ett nytt ämne som man kallade Telepathin. Senare efterforskningar visade dock att det redan upptäckts i Peganum harmala och kallades harmin.

Harmelalkaloider är naturligt förekommande MAO-hämmare. Det vanligaste användningsområdet bland användare av psykedeliska droger är för att göra DMT aktivt vid oralt bruk i form av Ayahuasca eller för att förstärka effekten av andra tryptaminer, men även ensamma ger dom en hallucinogen effekt vid högre doser. Alexander Shulgin vittnar i Tihkal om att visuella effekter existerar i form av bl.a CEV:s. Utöver det märks även en sederande effekt. Men i dessa högre doser är även bieffekterna mer framträdande och gör att harmelalkaloiderna ej är eftertraktade som berusningsdroger.

Varning! Det kan vara farligt att kombinera MAO-hämmare och vissa typer av mat och droger. Läs mer i artikeln MAO-hämmare.

Ursprungsbefolkningarna i Sydamerika som använder Ayahuasca tillskriver den större delen av den andliga och helande kraften till b. caapi och brukar använda mycket mindre DMT-växter än vad som blivit populärt bland västerlänningar.

Harmelalkaloiderna har även använts för att avgifta narkomaner [1] och ett flertal vetenskapliga undersökningar understödjer påståenden [2] [3] [4] [5] [6] [7]

Alkaloidhalt i olika växter

Växtens namn Harmala
Peganum harmala 2 - 7%
Banisteriopsis caapi varierande 0,1 - 1,0% främst i lägre skalan.
Passiflora incarnata 0,05 - 0,1%
Tribulus terrestris Svåruppskattad

Källa till de första tre: [8]

Förklaring av ratio: För att exempelvis få effekten av ett gram P. harmala måste 20 gram B. caapi användas.

Växter som innehåller harmelalkaloider

B. caapi

AGARICACEAE

  • Coriolus maximus (Harman)

APOCYNACEAE

  • Amsonia tabernaemontana (Harmin etc.)
  • Apocynum cannabinum (Harmalol)
  • Ochrosia nakaiana (Harman)

BIGNONIACEAE

  • Newbouldia laevis (Harman)

CALYCANTHACEAE

  • Calycanthus occidentalis (Harmin)

CHENOPODIACEAE

  • Hammada leptoclada (Tetrahydroharman etc.)
  • Kochia scoparia (Harmin etc.)

COMBRETACEAE

  • Guiera senegalensis (Harman etc.)

CYPERACEAE

  • Carex brevicollis (Harmin etc.)

ELAEAGNACEAE

  • Elaeagnus augustifolia (Harman etc.)
  • Elaeagnus hortensis (Tetrahydroharman etc.)
  • Elaeagnus orientalis (Tetrahydroharman)
  • Elaeagnus spinosa (Tetrahydroharman)
  • Hippophae rhammoides (Harman etc.)
  • Shepherdia argentea (Tetrahydroharmol)
  • Shepherdia canadensis (Tetrahydroharmol)

GRAMINEAE

  • Arundo donax (Tetrahydroharman)
  • Festuca arundinacea (Harman etc.)
  • Lolium perenne (Harman etc.)

FABACEAE

  • Acacia baileyana (Tetrahydroharman)
  • Acacia complanata (Tetrahydroharman etc.)
  • Burkea africana (Harman etc.)
  • Desmodium pulchellum (Harman etc.)
  • Mucuna pruriens (6-methoxy-harman)
  • Petalostylis labicheoides (Tetrahydroharman)
  • Prosopis nigra (Harman etc.)

LOGANIACEAE

  • Strychnos usambarensis (Harman)

MALPIGHIACEAE

  • Banisteriopsis caapi (Harmin, tetrahydroharmin, harmalin etc.)
  • Banisteriopsis lutea (Harmin)
  • Banisteriopsis muricata (Harmin)
  • Callaeum antifebrile (= Cabe paraensis) (Harmin)

MYRISTICACEAE

  • Virola cuspidata (6-Methoxy-Harman)

PASSIFLORACEAE

Släktet Passiflora:

  • Passiflora actinea (Harman = Passiflorin)
  • Passiflora alata (Harman)
  • Passiflora alba (Harman)
  • Passiflora bryonoides (Harman)
  • Passiflora caerulea (Harman)
  • Passiflora capsularis (Harman)
  • Passiflora decaisneana (Harman)
  • Passiflora edulis (Harman)
  • Passiflora eichleriana (Harman)
  • Passiflora foetida (Harman)
  • Passiflora incarnata (Harmin, harmalin, harman, etc.)
  • Passiflora quadrangularis (Harman)
  • Passiflora ruberosa (Harman)
  • Passiflora subpeltata (Harman)
  • Passiflora warmingii (Harman)

POLYGONACEAE

  • Leptactinia densiflora (Leptaflorin, etc.)
  • Nauclea diderrichii (Harman etc.)
  • Ophiorrhiza japonica (Harman)
  • Pauridiantha callicarpoides (Harman)
  • Pauridiantha dewevrei (Harman)
  • Pauridiantha lyalli (Harman)
  • Pauridiantha viridiflora (Harman)
  • Simira klugii (Harman)
  • Simira rubra (Harman)
  • Uncaria attenuata (Harman)
  • Uncaria canescens (Harman)
  • Uncaria orientalis (Harman)

SAPOTACEAE

  • Chrysophyllum lacouritianum (Norharman etc.)

SYMPLOCACEAE

  • Symplocos racemosa (Harman)
ZYGOPHYLLACEAE
Frön från P. harmala

Källa: [9]

Om de olika alkaloiderna

Generellt om potensen hos de olika molekylerna:

"In experiments designed to ascertain relative MAO inhibiting abilities, Udenfriend and associates (1958) determined harmine and harmaline to be about equal in activity with harman and tetrahydroharmine less potent, McKenna and coworkers (1984a) obtained similar results, as did Buckholtz & Boggan 1977, but found harmaline to be slightly more active than harmine. In contrast to this is McIsaac & Estévez 1966 who reported harman as having the greatest activity (and norharman having yet greater activity). McIsaac & Estévez used calf liver mitochondrial homogenates, while Udenfriend and McKenna had both used rat liver homogenates and Buckholtz & Boggan: rat liver and brain homogenate. (Comments adapted from Ott 1994)" [10]

Harmalin

Harmalin.png

HCl-formnen kristalliserar sig till gula kristaller. Avger ett mörkblått sken under UV-ljus. Harmalin är nästan dubbelt så giftigt som harmin, som man kan läsa i LD50-tabellen under Kemi.

"Harmaline, like other harmala alkaloids, does not seem to possess classical psychedelic activity (that activity similar to LSD, psilocybin/psilocin or mescaline). Even at high doses (5 mg/kg), the best one can expect from harmaline would be intense nausea, diarrhea, nystagmus and perhaps the sound of rushing water. A 0.5-1.0 mg/kg dose of harmaline (orally) is sufficient to block MAO for 4-6 hours without much of the physiological noise encountered at the higher doses."[11]

Harmin

Harmin.png

Bildar färglösa rombiska kristaller i metanol. Avger ett mörkblått sken under UV-ljus.

Orally active at 8 mg/ kg; Intravenously at 2 mg/ kg (Naranjo 1967 and Ott 1993.) When smoked, far smaller amounts (even normally trivial) produce a discernible interaction with tryptamines and/or LSD

"120 mg of harmine base (1.5 mg per kilogram is a better view) is usually recommended as the absolute lower limit for full oral activation of DMT. Some Ayahuasca brews have been found to contain slightly in excess of 400 mg per dose."

"Metabolism may vary widely between different species. Half-life in rats is 6 hours. Harmine (and its metabolites) show a 3 hour half-life in humans (however, the half-life of harmine in humans given ayahuasca orally was reported to be less than two hours according to McKenna et al. 1998 Maximum plasma levels were reached 102 minutes after ingestion.) Harmine will noticeably interact with free base tryptamines or orally activate tryptamines for only up to around 4 hours after its ingestion. This refers to harmine pre-administered rather than concurrently taken. Harmaline and tetrahydroharmine are likely to have a slightly longer duration and be handled and processed differently, if observations from other species can be considered an indicator. Detailed human pharmacological data is apparently only now beginning to be generated." [10]

Tetrahydroharmin (THH)

Tetrahydroharmin.png

Är både MAO-hämmare och svag SSRI. Finns i hög koncentration i Banisteriopsis caapi.

"tetrahydroharmine (THH), the second most abundant ß-carboline in the beverage, acts as a weak 5-HT uptake inhibitor and MAOI. Thus, THH may prolong the half-life of DMT by blocking its intraneuronal uptake, and hence, its inactivation by MAO, localized in mitochondria within the neuron. On the other hand, THH may block serotonin uptake into the neuron, resulting in higher levels of 5HT in the synaptic cleft; this 5-HT, in turn, may attenuate the subjective effects of orally ingested DMT by competing with it at post-synaptic receptor sites (Callaway, et al., 1997)." [12]

"Naranjo 1967 reported the racemate to be orally active and 300 mg as equivalent to 100 mg of harmaline. Psychotropic above 3 mg/ kg iv or 12 mg/ kg oral. Ott 1996 citing Naranjo 1967."

"Unlike harmine and harmine, tetrahydroharmine reacts with Ehrlich's reagent. Unlike the tryptamines which react within 30 minutes and develop a dark blue color, THH produces a characteristic robin's egg blue over a 24 hour period. McKenna et al. 1984."

"Tetrahydroharmine is said in the literature to be one third the activity of harmaline but this is based on one single bioassay in one individual. It is not known whether it is able to orally activate DMT and apparently no one has looked into the matter beyond evaluating its relative MAOI properties. MAOI capabilities alone apparently do not guarantee effectiveness at oral activation of DMT. While many MAOIs (including many more dangerous prescription MAOIs) can serve as oral activators; there are also good MAOIs that apparently do not. The evidence provided by some ayahusaca brew compositions suggests THH to be an effective oral activator for DMT despite its poor MAOI stature but apparently formal studies are lacking." [10]

Harman

Harman.png

Lyser blåviolett i UV-ljus.

"results suggest that harmane is absorbed into the systemic circulation more completely than harmine. Upon entering the body, harmane can be metabolized to form harmine; the latter may better distribute to the tissue compartment."[13]

Harmol

Metabolit från harmin som O-demetyleras av CYP2D6 i kroppen.

Harmalol

Metabolit från harmalin som O-demetyleras av CYP2D6 i kroppen. Ostabil i luften.

Kemi

Namn Formel Långt namn
Harmin (banisterin) C13H12N2O 7-Methoxy-1-methyl-9H-pyrido[3,4-b]indole
Harmalin (harmidin) C13H14N2O 4,9-Dihydro-7-methoxy-1-methyl-3H-pyrido[3,4-b]indole
Tetrahydroharmin C13H16N2O4P 7-Methoxy-1,2,3,4-Tetrahydro-Harmine
Harminsyra Methyl-7-methoxy-b-carboline-1-carboxylate
Harmilinsyra 7-methoxy-3,4-dihydro-b-carboline1-carboxylic acid
Harmanamid 1-carbamoyl-7-methoxy-b-carboline
Acethylnorharnin 1-acethyl-7-methoxy-b-carboline
Harmalol C12H12N2O 11-Hydroxyharmalan
Harman C12H10N2 1-methyl-9H-b-carboline

Betakarboliner.jpg

Harmala2.gif

För information om löslighet i olika vätskor, se Extrahering.

Metabolism

Harmalanedbrytning.jpg

LD50

Ämne LD50
Harmin Dosering under skinnet på råttor, 200 mg/kg.
Harmalin Dosering under skinnet på råttor, 120 mg/kg, (iv på möss 38mg/kg)
Harman Dosering under skinnet på råttor, 200 mg/kg.

Externa Länkar

  1. United States Patent 5591738 - Method of treating chemical dependency using b-carboline alkaloids, derivatives and salts thereof
  2. The effects of b-carbolines in rats trained with ibogaine as a discriminative stimulus
  3. Inhibitory Effect of Harmane on Morphine-Dependent Guinea Pig Ileum
  4. Norharman and alcohol-dependency in male Wistar rats
  5. Effects of harman and harmine on naloxone-precipitated withdrawal syndrome in morphine-dependent rats
  6. High-affinity binding of b-carbolines to imidazoline I2B receptors and MAO-A in rat tissues: Norharman blocks the effect of morphine withdrawal on DOPA/noradrenaline synthesis in the brain
  7. Dokumentation från Takiwasi
  8. Erowid Syrian Rue Vault : Three Beta-Carboline Containing Plants (...). Hämtad 2011-10-18
  9. Klipp från Ayahuasca Analogues
  10. 10,0 10,1 10,2 Erowid Online Books : "Ayahuasca: alkaloids, plants, and analogs" by Keeper of the Trout
  11. Tryptamines Beta-Barbolines and You av J.C. Callaway
  12. Ayahuasca.com
  13. Toxicokinetics of tremorogenic natural products, harmane and harmine, in male Sprague-Dawley rats. Hämtad 2011-10-18

Harmala alkaloid Wikipedia (en)

Erowid Harmala Vault

TiHKAL #13. Harmaline

TiHKAL #14. Harmine

TiHKAL #54. Tetrahydroharmine

Determination of N,N-dimethyltryptamine and b-carboline alkaloids in human plasma following oral administration of Ayahuasca

Sidan ändrades senast 26 april 2015 klockan 12.17.
Den här sidan har visats 27 264 gånger.

Translate this page: